Sequence organization of barley centromeres.

نویسندگان

  • S Hudakova
  • W Michalek
  • G G Presting
  • R ten Hoopen
  • K dos Santos
  • Z Jasencakova
  • I Schubert
چکیده

By sequencing, fingerprinting and in situ hybridization of a centromere-specific large insert clone (BAC 7), the sequence organization of centromeric DNA of barley could be elucidated. Within 23 kb, three copies of the Ty3/gypsy-like retroelement cereba were present. Two elements of approximately 7 kb, arranged in tandem, include long terminal repeats (LTRs) (approximately 1 kb) similar to the rice centromeric retrotransposon RIRE 7 and to the cereal centromeric sequence family, the primer binding site, the complete polygene flanked by untranslated regions, as well as a polypurine tract 5' of the downstream LTR. The high density (approximately 200 elements/centromere) and completeness of cereba elements and the absence of internally deleted elements and solo LTRs from the BAC 7 insert represent unique features of the barley centromeres as compared to those of other cereals. Obviously, the conserved cereba elements together with barley-specific G+C-rich satellite sequences constitute the major components of centromeric DNA in this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids.

Uniparental chromosome elimination occurs in several interspecific hybrids of plants. We studied the mechanism underlying selective elimination of the paternal chromosomes during the early development of Hordeum vulgare × Hordeum bulbosum embryos. The following conclusions regarding the role of the centromere-specific histone H3 variant (CENH3) in the process of chromosome elimination were draw...

متن کامل

Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure

Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined ("point") ce...

متن کامل

Chromatin Ring Formation at Plant Centromeres

We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-res...

متن کامل

Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae.

Centromere DNA element II (CDEII) of budding yeast centromeres is an AT-rich sequence essential for centromere (CEN) function. Sequence analysis of Saccharomyces cerevisiae CDEIIs revealed that A(5-7)/T(5-7) tracts are statistically overrepresented at the expense of AA/TT and alternating AT. To test the hypothesis that this nonrandom sequence organization is functionally important, a CEN librar...

متن کامل

inverted - repeat structure

Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined (‘point’) ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 29 24  شماره 

صفحات  -

تاریخ انتشار 2001